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Abstract

We describe a new color edge detection scheme and a re-

lated diffusion process based on hyperbolic coordinates in

color space. We derive intensity, hue and saturation based

edge detectors and show that the intensity and hue based

diffusion processes are governed by the heat equation fa-

miliar from conventional scale space theory. A qualita-

tively new differential equation is derived for the saturation

component.

1. Introduction

Edge detection in gray-value images is one of the most

important (and probably also one of the most intensively

investigated) problems in image processing. Due to the in-

creasing importance of color and other vector-valued im-

ages the design of edge detection methods for color and

vector-valued images has receivedmuch attention recently.

Apart from many heuristical approaches the theoreti-

cally most convincing methods are based on differential

geometry. The oldest method [2] views the image as a map

from the grid into a manifold. On this manifold (or rather

its tangent-spaces) there exists a distance measure. This

distance measure is pulled-back to the image grid where

it de�nes a new (pseudo-)metric. This metric is de�ned

by a symmetric, positive-semide�nite matrix. The edge-

strength and the edge-orientation are then de�ned in terms

of the eigenvectors and eigenvalues of this matrix.

Recently [5, 4, 7] another similar framework was intro-

duced by Sochen et. al.. They describe the image as a sur-

face in a (n+2)-dimensional space where n is the dimension

of the pixel vectors and the additional two coordinates are

the pixel coordinates. They then view the image as an em-

bedding of the two-dimensional coordinate manifold into

an (n+2)-dimensional feature manifold. On both the coor-

dinate manifold and the feature manifold exist Riemann-

metrics. From high-energy physics they introduce the con-

cept of a norm which depends on: (1) the metric in the

coordinate manifold, (2) the metric in the feature manifold
27
and (3) the mapping. This is then used to introduce a gen-

eral framework for edge-preserving smoothing and other

diffusion-based image processing methods. This is a very

general framework since a point on the feature manifold

can represent an intensity value, a color vector, computed

features like result vectors from �lter operations or a com-

bination of them.

Before these methods can be applied the user has to

choose the two matrices which de�ne the geometries of the

coordinate and the feature manifold. One natural selection

for the geometry of the coordinate space is to assume that

it is euclidean. In this paper we will mainly adopt this se-

lection and concentrate on the selection of the metric in

the feature space. We will only consider the case where

the points in feature space describe color vectors and we

will argue that the geometry of the feature space should

re�ect the geometrical properties of color space. We will

use results from our previous study of the Karhunen-Loéve

expansion of color spectra and argue that hyperbolic geom-

etry provides a natural geometry of the feature manifold.

2. Hyperbolic structure of color space

Traditional color processing methods describe colors with

three parameters (such as RGB or the CIE-XYZ, CIE-Lab

etc.). The parameters are chosen to give a good description

of color characteristics of the human color vision system

which is based on three color sensors or, in technical ap-

plications, they may be optimized for the hardware used.

Spectral based color processing methods try to avoid these

restrictions by working on the spectra directly. Many of

these methods describe the spectra by the coef�cients in an

eigenvector expansion. In most cases the eigenvector sys-

tem is computed from the measured spectra of color chips

in one or more color systems. Typical systems used are the

Munsell and the NCS system.

In our experiments we used a database consisting of re-

�ectance spectra of 2782 color chips, 1269 from the Mun-

sell system and the rest from the NCS system. For each

of the 1269 chips of the Munsell System the spectra were
8
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measured from 380nm to 800nm at 1 nm steps, while the

1513 samples from the NCS system were measured from

380nm to 780 nm at 5 nm intervals. These measurements

were combined in one set consisting of 2782 spectra (sam-

pled in 5 nm steps from 380 nm to 780nm). These spectra

were used to to compute the eigenvector system. When

we expanded the spectra in the databases we found that

the coef�cients are all located in a cone, with the excep-

tion of one spectrum which lies directly on the border 1. A

detailed description can be found in [6].
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Figure 1: Eigenvector expansion of Munsell color chips

Mathematicallywe computeN eigenvectors bm(�) (0 �
N < 10 are used in typical applications) and approximate

the spectrum s(�) as:

s(�) �

NX
n=0

cnbm(�): (1)

For the spectra of all chips in the database we �nd then that

jc0j
2

�

NX
n=1

jcnj
2

� 0 (2)

In the cone we can introduce a natural coordinate system

consisting of three parameters (�; �; �) de�ned as:

c0 = e� cosh�

c1 = e� sinh� cos�

c2 = e� sinh� sin� (3)
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The three coordinate axes describe: (a) rays through the

origin (�), (b) circles (�) and (c) hyperbola (�). In the fol-

lowing we will view the cone as the product of the real

line and the unit disk and express this by using the coordi-

nates (�; �; �) de�ned as:

� = log c2
0
� c2

1
� c2

2

� =
c1

c
0

= tanh� cos�

� =
c2

c0
= tanh� sin�: (4)

This leads to the natural coordinate system:

(�; �) 7! � + i� = tanh�ei� (5)

on the unit disk.

The natural metric on the unit disk (in the (�; �) coor-
dinate system, see page 378 in [8]) is de�ned by the matrix

HD =

�
1 0

0 sinh 2�

2

�
(6)

3. The norm of a color image

We now give a formal description of the strategy intro-

duced by Sochen et.al. in [7]. They consider a color (or

more general a vector-valued) image as a mapping between

two Riemann-manifolds. The manifolds de�ned on the do-

mains S and T are the coordinate and the feature manifold

respectively. Points in the set S are described by coor-

dinates xandy which are collected in the vector x. The

coordinate vector on T will be denoted by u. The metrics

on S and T are given by the symmetric matricesG andH.

In general these matrices vary over the manifold since we

are dealing with Riemann-manifolds: G (x) and H (u).
The image I : S ! T is a mapping from S to T : The

Jacobian matrix of I is denoted by J and the inverse, the

transpose and the trace of a general matrix M are given

byM�1;M 0 and tr (M):
For such a triple (S;G) ; I; (T ;H) the norm is de�ned

as:

E = E ((S;G) ; I; (T ;H))

=

Z
S

p
detG (x)� : : :

tr
�
G
�1 (x)J 0 (x)H (I ((x)))J (x)

�
dx(7)

This de�nition of the norm ensures that its value depends

only on the geometry of the objects involved, not on the

particular coordinate system.

In the general case we have a measurement vector for

each point in the set S: The elements of the feature vec-

tors I() can then consist of a the raw measurements and/or
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computed feature values derived from these raw measure-

ments. Using the measurement vectors we can thus design

the feature space T and the matricesG (x) andH (I (x))
which de�ne the metric structures. In this paper we will

only consider the simplest cases in which the feature vec-

tors I (x) describe the coordinate vector x and the color at

position x.

I : S ! T

x 7!
�
x; y; � (x) ; � (x) ; � (x)

�
(8)

The Jacobian J (x) is thus given by:

J
0 (x) =

�
1 0 �x (x) �x (x) �x (x)
0 1 �y (x) �y (x) �y (x)

�
(9)

where fx (x) =
@f

@x
(x).

We also choose the euclidean geometry on S: Its metric

is thus given by the identity matrix I : I = G (x). The

norm simpli�es in this case to

E ((S; I) ; I; (T ;H)) =Z
S

tr (J 0 (x)H (I ((x)))J (x)) dx (10)

Selecting the euclidean metric also on the feature manifold

(given by the identity matrix I) we get the norm

E ((S; I) ; I; (T ; I)) =Z
S

tr (J 0 (x)J (x)) dx =Z
S

2 + (�2
x
(x) + �2

y
(x)) + (�2

x
(x) + �2

y
(x)) + : : :

(�2
x
(x) + �2

y
(x)) dx =Z

S

2 + jr� (x)j2 + jr� (x)j2 + jr� (x)j2 dx (11)

where jrf (x)j
2

= (f2
x
(x)+f2

y
(x)) is the squared length

of the gradient of f at (x) :
The expression tr (J 0 (x)J (x)) is often used as a mea-

surement of edge strength in the processing of vector-valued

images (see [3])

Geometrically the feature manifold consists of three

components: the coordinate manifold (represented by the

coordinates x; y), the intensity component (represented by

the variable �) and the chromaticity disk (represented by

the variables �; �). It is thus natural to de�ne the follow-

ing metric on this manifold (see also the de�nition of the

metric on the unit disk de�ned in Eq. 6):

HD ((x)) =

0
BBBB@
A 0 0 0 0
0 A 0 0 0
0 0 B 0 0
0 0 0 C 0

0 0 0 0 C sinh 2�

2

1
CCCCA (12)
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The constants A;B;C de�ne the weighting between the

three different components. This leads to the �nal norm

derived from the hyperbolic geometry in color space:

E ((S; I) ; I; (T ;H
D
)) =Z

S

2A+B jr� (x)j
2

+ : : :

C

�
jr� (x)j

2

+
sinh 2� (x)

2
jr� (x)j

2

�
dx(13)

4. A non-euclidean scale space

The general energy function E de�ned in Eq. 7 is used

in [7] to de�ne a generalization of scale-space theory.

The energy function E de�nes a variational problem

which is solved for the image function I . As an example

consider the case where A = C = 0; B = 1=2 in

Eq. 13. This leads to

E� =

Z
S

1

2
jr� (x)j2 dx (14)

in Eq. 13. From the calculus of variation (page 165 in [1])

it is known that the function b� (x) with the smallest en-

ergy E� must satisfy the heat equation

@2b� (x)
@x2

+
@2b� (x)
@y2

= �b� (x; t) = 0 (15)

The original scale-space equation

@b� (x; t)
@t

= ��b� (x; t) (16)

can thus be interpreted as the gradient-descent of a diffu-

sion process under the control of the energy function E�.

In this way the original function � (x) is embedded in a

scale-space � (x; t) where the relation between the differ-

ent scales is controlled through the gradient of the energy

function. Since � describes the intensity coordinate we

found that ordinary scale space theory for gray scale im-

ages is a special case contained in this framework.

As second example consider the �hyperbolic part�

E� =

Z
S

sinh 2� (x)

2
jr� (x)j

2

dx (17)

The Euler-Lagrange equation for this variational problem

is then given by (see page 165 in [1]):

sinh (2�) (�xx + �yy) + cosh (2�)
�
�2
x
+ �2

y

�
= 0

(18)

or

sinh (2�)��+ cosh (2�) jr�j
2

= 0 (19)

Dividing this by the positive function cosh� leads to the

new differential equation

tanh (2�)��+ jr�j2 = 0 (20)
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5. Implementation and Examples

The color processing procedure described so far is based

on the assumption that we can describe color by the �rst

few eigenvector coef�cients of the underlying spectra. To-

day multispectral imaging techniques are only used in spe-

cial applications. The eigenvector coef�cients are there-

fore rarely available in practice.What is given instead is

usually only a color image in RGB-format.

In the case of RGB images we observe �rst that all vec-

tor components are positive and the vectors are thus all lo-

cated in one octant. In this octant we use the main diagonal

as the �rst coordinate axis. Around this axis we construct a

cone, with top at the origin, which encloses the whole oc-

tant and we introduce hyperbolic coordinates (�; �; �) as
described in Eq. 4 and 5. These coordinates describe the

intensity, the saturation and the hue as described before.

In the experiments we implemented the �ltering opera-

tions with the simple Matlab �lters which approximate the

gradients with simple 3� 3 �lter kernels. The original im-

age and the different edge detection schemes in are shown

in Figure 2.

6. Summary and conclusions

The principle component analysis of a large database of

color spectra shows that the most important coef�cients in

the eigenvector expansion are all located in a cone. This

seems to be a general property of color spectra in general

which re�ects the non-negativity of the spectra. There-

fore we convert RGB color vectors to a conical coordinate

system for further processing. When using these coordi-

nates one has to remember that this coordinate system is

based on the physical properties of color spectra relevant

for color vision. They do not into account the physiologi-

cal and psychological processes which are important in the

understanding of human color perception.

Based on a hyperbolic coordinate system in spectral

color space we introduce a metric in this space of color

spectra which is natural in the geometrical sense derived

from a general group theoretical framework. This natural

metric is then combined with the theory of the Beltrami

�ow introduced by Sochen et. al. to construct a new color

edge detector and a related diffusion process based on gra-

dient decent. We showed that the intensity and hue based

diffusion processes are based on the Laplacian and that

the diffusion in the saturation component follows a new

type of differential equation. Diffusion in the hue variable

is also different from conventional scale space processes

since the (hue-) values of the process are located on the

unit circle and not on the real axis as usual.
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(a) Original Image (b) Combined Edge Detector

(c) Intensity edges (d) Hue edges (e) Saturation edges

F igure 2: The original image and the different edge images
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